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Human learners tend to perceive and acquire sound input categorically, even if the input is of 
a gradient nature [1, 2, 3]. This tendency results in the acquisition of a “prototypical phonetic 
system” [4], in which sounds near phonetic category centers are perceived as closer to their centers 
than they actually are. It is unclear how much of this prototypical system is learned through 
language experience and how much can be attributed to humans' innate cognitive properties, as 
infants as young as one month old already show categorical perception [1]. 

The current study aims to investigate whether ‘naïve’ learners can still acquire a prototypical 
phonetic system at the very initial stage of phonetic learning, before they have acquired any 
knowledge about their language’s lexicon or structure. To answer this question, we test an 
autoencoder model that is trained purely in a bottom-up fashion, without assuming any abstract 
featural system. Unlike previous models, we evaluate the model’s learning outcome directly on the 
hidden representations of phones, instead of on the basis of distinctive features. 

Our results show that the autoencoder model is able to capture the phonetic system in the form 
of phone distributions in the hidden space, which is a close analogy to the prototypical category 
learning observed in human learners [4]. We selected two typologically unrelated languages, 
English and Mandarin, and used 38 hours of recordings from 40 English speakers (Buckeye Speech 
Corpus [5]) and a comparable size of recordings from Mandarin speakers (AISHELL-3 [6]) as 
training data. The recordings were in wave format, and we extracted mel-frequency cepstral 
coefficients before training. We then randomly segmented the data to ensure that no or minimal 
phonological cues and segmental boundary information was provided. No ground truth labels were 
incorporated. For each language, we built an autoencoder to encode the input information into a 
hidden space and reconstruct the hidden representation back to the input with least distortion [7]. 
The encoder simulated the complex, layered neural transformations underlying speech perception, 
which ultimately converted the sensory receptor signal to the underlying neural code of segments 
[8]. The decoder simulated the reverse process of generating sounds from internal representations, 
but excluded articulation since there is no simulation of articulators. The training was unsupervised, 
without external feedback, and no segment boundary was provided, which is analogous to the early 
stage of infants’ phonetic acquisition [9]. 

The preliminary clustering task revealed that phonetic knowledge successfully emerged in the 
hidden space for both English and Mandarin languages. The models’ hidden representations yielded 
significantly higher homogeneity, completeness, and V-measure scores than random clustering (e.g., 
V_Random_English=0.006 vs. V_English=0.289), indicating that the autoencoder was able to reproduce 
the input sounds and identify phonetic category centers, even without phonological context or 
segmental boundary information. Further evaluations of the hidden representations showed that the 
model was able to project tokens of the same phone to similar areas and tokens of different phones 
to different areas in the hidden space, while successfully learning feature-based contrasts such as 
[±back], [±high], [±strident], and [±voice]. The current model trained solely on phonetic cues was 
able to construct a phonetic system that distinguishes sounds, implying that the model was able to 
project an acoustic token to its correct absolute position, rather than merely achieving paired phone 
contrasts.  
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Although the model achieved significant success, it did not capture the acquisition of 
allophones. Unlike top-down models [10, 11], which take into account human’s different perceptual 
sensitivity and learnability of phonemes and allophones [12, 13], the current bottom-up model did 
not show a significant difference between phoneme and allophone projections. For example, the 
distribution of allophones of Mandarin /i/ (/i, ɹ ̩, ɻ ̩/) was similar to that of phonemes (μ (i,ɹ,ɻ 
dists)=2.978; μ (y, ɚ, a, ɤ, u dists)=3.194; p=0.817).  

In summary, this study demonstrates that an autoencoder model can learn phonetic knowledge 
from contextless acoustic input without supervision or explicit segment boundary. The model was 
able to project different phones to different areas in the hidden space, similar to the way human 
infants acquire phonetic knowledge. This suggests that infants’ phonetic knowledge may not be 
innate but can be acquired based purely on acoustic information, without relying on language-
specific learning facilities. However, the model could not reach phonological knowledge without 
training on phonological cues, which is acquired by infants at around 8-10 months [14]. This 
implies that phonological information plays an indispensable role in the language-specific 
refinement of learners’ knowledge on phonetics and phonology. 
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